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Novel y-turn mimetics with a reinforced hydrogen bond
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Abstract

Pyridylmethylphenols 2 can mimic the geometry of y-turns. Hydrogen bonding in 2 has been characterized
by X-ray crystallography, IR and NMR spectroscopy, and molecular modeling. © 1999 Elsevier Science Ltd. All
rights reserved.

In addition to the frequently encountered B-turns, y-turns are important peptide secondary structure
elements.! While some y-turn mimetics have been described previously,? none of them are based on the
concept of reinforced hydrogen bonding reported here.

The characteristic feature of y-turns 1 is a seven-membered, hydrogen bonded ring. In small, linear
peptides such a hydrogen bond is not sufficient to constrain the conformation of the peptide in solution.
Our design effort targeted towards reinforcing the hydrogen bond and resulted in 2 with a phenol-pyridine
hydrogen bond (Scheme 1).

We prepared selected examples of 2 corresponding to tripeptides Val-Gly-Ser (mimetic 5) and Val-Gly-
Ala (mimetic 7), in addition to compound 6 used in structural studies. Our synthetic strategy involved
ketone 4 as the key intermediate, allowing the introduction of R;;; substituents, if desired. Ketone 4
was symhes1zed via ortho-lithiation* of 3 and coupling with 6-chlorocarbonyl-2- -pyridinecarboxylic acid
methyl ester.* Reduction with NaBHj, aqueous acidic hydrolysis of the MOM group and hydrogenolysis
in TFA/CH,Cl, over Pd/C yielded 5, 6 and 7 as a mixture, which was separated by MPLC.? We also
prepared the parent molecule 8 (Table 1) as a reference compound via a literature route.®

We carried out structural studies of 5-8 both in solution and in the solid state. According to the IR
spectra (Table 1), 7 and 8 are unambiguously and fully hydrogen bonded in chlorinated hydrocarbons.
Based on a comparative analysis of the spectra, the free OH signals in 5 and 6 are assigned to the aliphatic
hydroxyls, suggesting § and 6 are fully hydrogen bonded as well. The NMR chemical shifts (Table 1) are
also consistent with hydrogen bonding, with slightly weaker hydrogen bonds in 5 and 6 than in 7 and 8.

* Corresponding author.
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Table 1

Hydrogen bonding in IR and NMR. The presence (+) or absence (-) of signals in IR is indicated

5 6 7 8

IR® o
N

Ca-OH"N + + + + o "~
Free C,,-OH - - . - 8
Free C-OH + + - - o
'H NMR® \N/(o:(
C,OH &(CDCly) 11.2 10.9 12.0 11.7 b

"Dilute (<10 mM) CCl, solutions. 2-i-Pr-phenol is not intermolecularly hydrogen
bonding even in 100 mM solution. From routine 'H NMR spectra. The OH
signal of 2-i-Pr-phenol resonates at 54.65 - 4.70 in 1-100 mM solution.

Overall, it appears that 5-8 all have a high preference for the hydrogen bonded conformation in solution.
In comparison, 9 (Table 1) was only partially hydrogen bonded under comparable conditions.’

We also obtained theoretical estimates of the strength of the hydrogen bond in 7 from molecular
dynamics simulations. We carried out fully converged simulations using the Mixed Mode Monte
Carlo/Stochastic Dynamics protocol,® also reported in connection with 9.° Thus, at 295K 7 is 92-99%
hydrogen bonded,'® while 9 has been reported to be only 40% hydrogen bonded.’ Consequently,
both theoretical and experimental structural studies in solution support the conclusion that we have
successfully reinforced the hydrogen bond upon converting 1 to 2 and that the hydrogen bond in 2 can
act as a conformational lock.

The geometries of the hydrogen bonded conformations were obtained from X-ray crystallographic
studies. According to X-ray diffraction,!! 6 and 7 adopt intramolecularly hydrogen bonded conformations
in the solid state, with two enantiomeric conformations present in the crystal of 7.12 The O- - -N distance
in 6 and 7 is 2.69-2.70 A (Table 2), resulting in an (O)H---N distance of 1.7 A. In comparison,
a range of 1.7-2.2 A has been observed for typical (O)H---N hydrogen bonds in crystals.!> The
corresponding mean distances in phenol-pyridine hydrogen bonding are 2.0 and 2.2 A in inter- and
intramolecular cases, respectively.!* Short intramolecular hydrogen bonds (down to 1.63 A) have
been recorded in 2-(2-pyridyl)phenols, with six-membered hydrogen bonded rings.!* However, seven-
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Table 2
Geometric parameters in the crystal structures of 6 and 7. Conformer A of 7 is illustrated

Parameter Definition 6 7,confA 7,confB
O"N (A) O1-N1 2.702(4) 2.690(4) 2.698(4)
(O)H'N (A) HI-NI 1.65(5) 1.71(4) 1.69(4)

<DHA (deg)  OI-HI-NI  1592) 157(2)  159(2)
<HAB (deg)  HI-NI-C4  169(2) 165(2) 164(2)
<Angle3 (deg) NI-O1-C9  93.7(4) 96.9(4) 57.0(4)
<Angle4 (deg) C4-N1-O1  160.5(4) 157.14) 157.3(4)
¢' (deg) C2-C7-C8-C9 -80.3(4) 71.8(4) -72.9(4)
¢ (deg) NI-C2-C7-C8 62.7(4) -65.3(4) 65.3(4)

Figure 1. Stereo view of the crystal structure of 7 (dark) superimposed with the crystal structure of cy-
clo-(Gly-Pro-Gly-D-Ala-Pro) (white spheres).'S The (C=)O- - -(H-)N distance in the y-turn is 2.92 A

membered, intramolecularly hydrogen bonded phenol-pyridine rings have not been described previously.
Overall, the structural details from X-ray diffraction —the practically linear hydrogen bond geometry
(Table 2) and the short (O)H- --N distance — are consistent with relatively strong hydrogen bonding in
2.

The geometric properties of the conformers of 6 and 7 (Table 2) mimic those of y-turns. Firstly, the
torsion angles ¢’ and @’ fall into the ¢, range usually found in classic y-turns (70-95°, —~75-45°) and
in inverse y-turns (-95-70°, 45-40°).! Secondly, the superimposition of 7 and the y-turn in cyclo-(Gly-
Pro-Gly-D-Ala-Pro) (Fig. 1) reveals a good fit, with a superimposition RMSD of 0.21 A between the
backbone atoms and the corresponding atoms in 7. Additionally, in this particular case the side chains
(or potential side side chains) of i and i+3 residues of the y-turn in the cyclic peptide coincide well with
the i-Pr and Me substituents of 7. Thus, the comparison suggests that mimetics 2 are capable of orienting
side chains as found in peptides.!6

In conclusion, we have designed peptide turn mimetics 2 where the hydrogen bond of y-turns has been
replaced by a stronger one. Structural studies confirm that the hydrogen bond has been successfully
reinforced and that 2 can mimic the geometry of y-turns. Mimetics 2 provide a potential scaffold
for biological applications where a ‘soft’ conformational lock and possibility of slight adjustment of
geometry upon binding may be advantageous. Additionally, 2 can be used in evaluating molecular
modeling methods, and our studies in this field will be reported in due course.
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